COMPLICAÇÕES CRÔNICAS DO DIABETES MELLITUS E AVANÇOS EM PESQUISAS SOBRE OS EFEITOS DA NEUROPATIA DIABÉTICA NO TUBO DIGESTIVO

Dêbora de Mello Gonçalves Sant’Ana***
Rita Cristina da Silva Cardoso**
Jaqueline Nelisses Zanoni**
Evanilde Buzzo Romano*
Marcílio Hubner de Miranda-Neto**

RESUMO: O diabetes mellitus produz uma série de manifestações crônicas, devido à elevação, por um longo período, da taxa de glicose sanguínea, o que leva à distúrbios do metabolismo de carboidratos, lipídeos e proteínas. A sintomatologia pode aparecer como um sinal tardio do diabetes mellitus. É demonstrado através de anticorpos insulares que podem ser preexistentes muitos anos antes que a célula β do pâncreas se manifeste anormal. Dentre as complicações crônicas do diabetes mellitus destacam-se a macroangiopatia, microangiopatia e neuropatia diabética, as quais provocam uma grande mortalidade e incapacitações. Estima-se que, no Brasil, existam cinco milhões de indivíduos diabéticos. Devido à elevada incidência desta doença, tem-se levantado a cada ano uma gama de novas pesquisas, pois muitos dados de sua patologia permanecem obscuros. Neste artigo, realizamos uma revisão de literatura dos principais aspectos das complicações crônicas do diabetes mellitus.

PALAVRAS-CHAVE: Diabetes mellitus; Complicações crônicas; Neuropatia periférica.

CHRONIC COMPLICATIONS OF DIABETES MELLITUS AND ADVANCES IN THE RESEARCH ABOUT THE EFFECTS OF DIABETIC NEUROPATHY ON THE DIGESTIVE TRACT

ABSTRACT: Diabetes mellitus is a disease that produces a series of chronic manifestations due to the increase in blood glucose, bringing about disturbances of the metabolism of sugars, fats and proteins. Clinical symptoms may appear as a late signal of diabetes mellitus, which can be demonstrated through islet antibodies that can be present many years before the β cells of pancreas appear abnormal. Among the chronic problems of diabetes are macroangiopathy, microangiopathy and diabetic neuropathy, which are the cause of many deaths and incapacities. In Brazil it is estimated that five million people are diabetic. Due to the high incidence of this disease, each year many new approaches are designed, for many aspects of its pathology are still obscure.

KEY WORDS: Diabetes mellitus; Chronic manifestations; Diabetic neuropathy.

Introdução

O diabetes mellitus é um grupo heterogêneo de distúrbios caracterizados por elevação da glicose sanguínea. Pode haver uma diminuição da capacidade corpórea em responder à insulina e/ou uma redução ou até ausência de insulina produzida pela células β pancreáticas. Isto leva às alterações no metabolismo de carboidratos, proteínas e gorduras (BRUNNER & SUDDARTH, 1993; SANT’ANA et al., 1997). As manifestações do metabolismo desordenado podem aparecer anos antes do desenvolvimento de uma sintomatologia clínica aparente, desta forma acredita-se que a hiperglicemia é um sinal tardio do diabetes mellitus. Este fato é demonstrado através da presença de anticorpos insulares que podem existir muitos anos antes de que se torne anormais (GILL, 1991, MÍNISTÉRIO DA SAÚDE, 1996).
Segundo BRUNNER & SUDDARTH (1993), o diabetes *mellitus* é uma doença crônica de grande importância mundial, sendo especialmente prevalente entre os idosos e constituindo a terceira principal causa de morte por doença nos Estados Unidos. De acordo com dados do MINISTÉRIO DA SAÚDE (1996) estima-se que existam, no Brasil, cinco milhões de indivíduos diabéticos, dos quais a metade desconhece o diagnóstico. Destes casos, 90% são diabéticos tipo II (Insulino não-dependente) e de 5-10% do tipo I (Insulino dependente). A prevalência é semelhante para homens e mulheres.

Devido o diabetes ser uma doença que afeta uma grande parte da população, ocasionando incapacitações e mortalidade prematura; temos como objetivo, atualizar as informações sobre a fisiopatologia e manifestações clínicas das complicações crônicas desta doença, possibilitando um melhor esclarecimento sobre controle e tratamento de suas complicações. Objetivamos também, uma explanação sobre as manifestações digestivas da neuropatia diabética e as pesquisas atuais sobre estas complicações.

Desenvolvimento

Fisiopatologia e quadro clínico do diabetes *mellitus*

O diabetes *mellitus* é uma doença em que a insulina não exerce adequadamente sua ação, havendo dificuldade de penetração da glicose em tecidos insulino-dependentes. Há um aumento da glicogenólise hepática e liberação de glicose no sangue, havendo um catabolismo proteico, com liberação de aminócidos na corrente sanguínea. Ao chegar no fígado, estes aminoácidos serão utilizados como substratos para a gliconeogênese, ocorrendo a lipólise com liberação de ácidos graxos e de glicerol que ao atingir o fígado contribui para a gliconeogênese (MINISTÉRIO DA SAÚDE, 1996).

Consequentemente, há uma hiperlúcia. O excesso de glicose no sangue será filtrado no glo-merulo renal e não totalmente reabsorvido pelo túbulo renal. A glicose começa então a ser eliminada pela urina, sendo osmoticamente ativa, acarretando um aumento do volume urinário levando à poliúria. Como consequência da perda de água e portioneletrolítico, há uma desidratação hipertônica levando o paciente a ter sede e aumento da ingestão hídrica (polidipsia).

Quando este quadro de desidratação atinge o Sistema Nervoso Central, ocorrem alterações da consciência, levando o paciente a apresentar sonolência, obnubilação, torpor e coma. Este quadro clínico recebe a denominação de coma hiperosmolar hiperglicêmico não cetônico.

Em outras situações, a hiperglicemia pode levar a uma acentuada lipólise. Os ácidos graxos livres que deixam os adipócitos caem na corrente circulatória sanguínea e vão para o fígado. Neste órgão, parte dos ácidos graxos é reesterificado, originando os lipídios que serão transportados em forma de lipoproteínas. Aqueles ácidos graxos que não foram reesterificados são carreados pela enzima carnitina acil-transferase para o interior da mitocôndria, onde serão usados pelo ciclo dos ácidos tricarboxílicos para gerar energia ou serão transformados nos conhecidos corpos cetônicos (ácido acetil-acético, ácido beta-hidroxit bórico e acetona), estes cetoácidos são secundariamente usados como substratos energéticos.

Algumas vezes, o diabetes entra em situações de descompensação, produzindo quantidades exageradas de corpos cetônicos. Estas grandes quantidades não podem ser utilizadas pelos tecidos como fonte de energia e estes são liberados ao sangue. No sangue, os sistemas de tampão tentam neutralizar a concentração de ácidos quando a concentração ultrapassa a capacidade de tamponamento, sobrevêm a ácidos metabólica ou cetoacidose.

O paciente com cetoacetozose apresentam uma excreção renal acentuada de bases, o que por sua ação osmótica leva à eliminação de água. O paciente desenvolve sintomas como náuseas e vômitos e isso o impede de se reidratar através da ingestão de líquidos. A desidratação desenvolve-se também no Sistema Nervoso Central e aí caracteriza-se o coma hiperglicêmico com cetoacetozose. O balanço da quantidade de corpos cetônicos livres deve-se à razão insulina/glucagon quando o glucagon predomina, otimiza-se a cetogênese e pode levar a cetoacetozose. A insulina estando em níveis adequados, bloqueia a lipólise, prevenindo a instauração de quadros de cetoacidose (RULL et al., 1992; GUELER, 1993; LIMA, 1993; MINISTÉRIO DA SAÚDE, 1993).

O diabetes *mellitus* possui complicações que podem ser divididos em agudas e crônicas, neste tra-
balho será dado ênfase às complicações crônicas.

Patogênese das Complicações
Crônicas do diabetes mellitus
Glicosilação não enzimática de proteínas
A glicosilação de proteínas consiste da adição de moléculas de glicose à proteínas por reações lentas e contínuas, dependente da duração do contato entre elas e da concentração de glicose. Esta ocorre praticamente todos os órgãos e tecidos, afetando muitas proteínas que poderiam participar na gênese de anormalidades funcionais associadas com a hiperglicemia. Relacionam-se também ao aparecimento das complicações do diabetes (RULL et al., 1992).

Ativação da via dos poliós
A via dos poliós é uma via metabólica que converte a glicose em um álcool derivado do sorbitol, pela ação da enzima aldose redutase. O metabolismo do sorbitol é lento e este não apresenta difusão livre através das membranas celulares. Naquelas células em que o transporte de glicose não depende de insulina e a glicose penetra livremente, a existência desta via enzimática leva ao acúmulo de sorbitol e de frutose intracelulares em relação direta à hiperglicemia, resultando num aumento de concentração intracelular de glicose. O sorbitol acumula-se nas células de Schwan do tecido nervoso e cristalino (SKYLER, 1992).

Ação sobre monoinositol, fosfoinositídeos e bomba de Na/K ATPase
Em alguns tecidos, dentre eles, o nervoso, retiniano e renal, a hiperglicemia leva a uma inhibição competitiva da captação do monoinositol dependente de sódio, reduzindo sua concentração intracelular. O monoinositol é usado para sintetizar o fosfatidilinositol da membrana celular, e postulou-se que sua diminuição leva a uma menor atividade da bomba Na/K ATPase. A hiperglicemia leva, portanto, a uma alteração metabólica com consequente prejuízo da transmissão do impulso nervoso (SKYLER, 1992).

Glicosilação enzimática das membranas basais
As membranas basais de capilares de glomérulos renais apresentam um aumento da concentração de carboidratos.

Plaquetas e função endotelial
Encontra-se no diabético um aumento na agregação plaquetária, aumento do metabolismo do ácido aracnódico e das plaquetas, diminuição da produção de prostaciclinas pelas células endoteliais, diminuição da atividade fibrinolítica e aumento da coagulação sanguínea (SKYLER, 1992).

Alterações hemodinâmicas
Propõem-se que as alterações hemodinâmicas na microcirculação possam ser responsáveis pelo início e perpetuação da microangiopatia. A hiperglicemia moderada leva a um aumento do volume do fluxo sanguíneo através dos leitos capilares em vários tecidos. No rim, aumenta a pressão hidráulica transcapilar glomerular, levando a uma progressiva lesão, alterando a permeabilidade seletiva glomerular e agravando a proteinúria (SKYLER, 1992).

Alteração do metabolismo de lipídios
A elevação das concentrações plasmáticas de colesterol e triglicerídeos tem-se correlacionado com o aumentado risco de aterosclerose (SKYLER, 1992).

Classificação das Complicações
Crônicas do Diabetes mellitus
a) macroangiopatia
A macroangiopatia diabética é a aceleração dos processos de aterosclerose das grandes artérias. Acomete principalmente os territórios coronário, cerebral e extremidades dos membros inferiores. Juntamente com a hipertensão arterial, a obesidade, a hiperlipidemia, o sedentarismo e o tabagismo, o diabetes mellitus é um dos mais importantes fatores de risco identificados na doença aterosclerótica. As manifestações da macroangiopatia diabética são aquelas relacionadas aos territórios atingidos (INFAANTE, 1992; MINISTÉRIO DA SAÚDE, 1993).

b) microangiopatias
Considera-se como microangiopatias o comprometimento dos capilares sanguíneos, o descreveremos a seguir em dois territórios especialmente importantes para o paciente diabético, o ocular e o renal.
Doença ocular do diabetes mellitus

Doença renal do diabetes

Neuropatia Diabética

O acometimento neurológico é um dos principais responsáveis pela morbidade e mortalidade do diabetes. O acometimento dos nervos periféricos, embora possa ocorrer como consequências de alterações na microcirculação dos nervos (vasa nervorum) é basicamente produzida por alterações no metabolismo dos neurônios, levadas pela hiper-glicemia. Cerca de 40% dos pacientes diabéticos apresentam algum tipo de neuropatia, que comumente contribuem para a incapacitação que ocorre nas fases avançadas desta doença (LIMA, 1993; MINISTÉRIO DA SAÚDE, 1993).

Para BRUNNER & SUDDARTH (1982), a neuropatia do diabetes refere-se a um grupo de doenças que afeta todos os tipos de nervos, inclusive os periféricos (sensormotores), autônomos e espinhais. Os distúrbios parecem ser clinicamente diversos e dependem da localização das células nervosas afetadas. A prevalência aumenta com a idade do paciente e a duração da doença (cheja a 50% nos pacientes que apresentam diabetes há 25 anos).

Patogenia da Neuropatia Diabética

JADZINSKY (1992) descreve as alterações que ocorrem no tecido nervoso em animais de laboratório com a diabetes experimental induzida por drogas e em humanos. Em animais de laboratório, as lesões nervosas atingem todos os territórios e apresentam um amplo espectro. As lesões estruturais atingem os nós dos Ranvier e as células de Schwann dos axônios periféricos e dos elementos vasculares do endoneuro. Em ratos, observa-se, sequencialmente, o espessamento e túmefação das zonas nodais e paranodais, o que resulta na diminuição da condução nervosa. A túmefação é o resultado de um aumento da concentração de sódio, chegando a cinco vezes o valor normal, isso deve-se a uma alteração da bomba de Na⁺/K⁺ ATPase que é responsável por esta modificação. A microscopia eletrônica tem demonstrado um desaparecimento da união axoglial, lesão este que não apresenta melhora mediante o tratamento insulinico. A desunião dos axônios com as células da glia representam o antecedente anatômico e funcional imediato ao espessamento paranodal. As alterações nodais também têm sido demonstrado em ratos diabéticos, induzidos por estreptozootocina. Análises ultraestruturais também demonstram alterações na organização do citoesqueleto neuronal, com mão orientação das neurofibras e neuritúbulos periféricos. As alterações axoplasmáticas podem levar às células de Schwann a eventualmente sequestram e digerirem partes do mesmo, o que é verificado em diabetes experimentais de longa duração. Estas anormalidades devem-se à glicosilação ou
fosforilação alterada das proteínas estruturais do axônio e como consequência há uma polimerização errada comprometendo a formação do citoesqueleto. Ocorre uma degeneração característica de degeneração walleriana com lesões importantes nos extremos distais do axônio. Observa-se atrofia de 50% das fibras mielinizadas do nervo tibial, após um ano de diabetes experimentais em ratos.

Em humanos, a patogênese pode ser dividida principalmente nas alterações das células de Schwann, das células perineurais, dos axônios e da vasa nervorum, como descrito por BRUNNER & SUDDARTH (1982). Estes pesquisadores consideram que a neuropatia no diabetes pode ser devida a mecanismos vasculares, metabólicos ou ambos.

JADZINSKY (1992) sequência as alterações estruturais em diabéticos humanos e afirma que as alterações dos nodos de Ranvier são semelhantes às aquelas descritas para animais de laboratório. Considera também, principalmente em nervos periféricos das extremidades dos membros inferiores, a atrofia dos axônios, manifestações microvasculares dos vasos endoneurais, com obstrução dos microvasos. A etiopatologia das lesões estruturais da neuropatia diabética tenta ser explicada por uma série de hipóteses. A primeira é a teoria metabólica, esta baseia-se nas alterações da via dos polí-ôis, acúmulo de sorbitol e água na célula de Schwann, desencadeando alterações metabólicas que resultaram nas modificações estruturais. O acúmulo de sorbitol diminui a síntese de fosfominossil, diminuindo a concentração intracelular do diacilglicerol, que é precursor do ácido aracnônico, e produzindo as prostaglandinas, o leucotrieno e o tromboxano. Além disso, levaria a uma diminuição da ação da bomba Na+/K+ ATPase, resultando nos processos já descritos anteriormente.

Outra teoria que tenta explicar a neuropatia diabética é a teoria vascular. Esta baseia-se no espessamento da membrana basal da vasa nervorum, aumento na viscosidade do sangue e agregação plaquetária. Sabe-se que a relação entre a isquemia resultante e a atrofia neuronal é inegável, mas se acredita que a teoria vascular não pode ser considerada isoladamente. A teoria da glicosilação diz que a adição de glicose nas proteínas das células de Schwann seriam as mais afetadas. A melina glicosilada seria reconhecida por macrófagos os quais apresentam receptores específicos para a mielina modificada. Alguns autores discutem também a teoria hipóxica, que se refere lesões estruturais pela redução da tensão de oxigênio em cerca de 25%, que resultaria em lesões do tecido nervoso.

Analizando a literatura por nós levantada sobre a etiopatogéncia da neuropatia diabética, acreditamos que nesta estão envolvidos uma série de acontecimentos, com maior ou menor importância. Acreditamos também que as lesões estruturais são levadas por uma associação de todos os processos propostos pelas teorias acima mencionadas, e suas consequências clínicas serão agora descritas.

Espectro clínico da neuropatia diabética
Os dois tipos mais comuns de neuropatia diabética são a polineuropatia sensoriomotora e a neuropatia autônoma. As mononeuropatias cranianas - por exemplo, afetando o nervo oculomotor - também ocorrem no diabetes, especialmente entre os mais idosos (BRUNNER & SUDDARTH, 1982). O MINISTÉRIO DA SAÚDE (1993) sugeriu que se divida as neuropatias em polineuropatias simétricas distais, mononeuropatias isoladas ou múltiplas e neuropatias autônomas. Analisaremos as manifestações clínicas destas formas de neuropatia diabética.

Manifestações Clínicas da Polineuropatia Sensoriomotora
Este tipo de neuropatia também é chamado de neuropatia periférica. Afeta mais comumente as partes distais e os nervos, e especialmente as extremidades inferiores. Ela afeta ambos os lados do corpo de modo simétrico, e pode progressivamente se espalhar na direção proximal. Os sintomas iniciais incluem parestesias (formigamento, zumbido e sensação de dor) e sensação de queimadura (especialmente, na noite). A medida que a neuropatia progride, os pés ficam dormentes. Além disso, há uma diminuição na propriocepção (consciência da postura e movimento do corpo, e da posição e peso dos objetos em relação ao corpo) e na sensação de leve toque, que pode levar a uma marcha não firme. A diminuição das sensações de dor e temperatura deixam os pacientes com neuropatia com risco aumentado de danos e infecções não
detectadas nos pés (BRUNNER & SUDDARTH, 1982; MINISTERIO DA SAÚDE, 1993).

Ao exame físico, é encontrada uma diminuição nos reflexos profundos dos tendões e sensação vibratória. Para alguns pacientes que apresentam poucos ou nenhum sintooma de neuropatia, estes dados físicos podem ser a única indicação de que as alterações neuropáticas estão ocorrendo. Para pacientes com sinais ou sintomas de neuropatia, é importante excluir possíveis neuropatias, inclusive as alcoólicas ou por deficiência de vitaminas. Existem pesquisas sobre o papel do controle da glicose sanguínea no bloqueio da progressão da neuropatia, ou na sua prevenção.

Tem sido utilizado vários enfoques de tratamento da dor sentida por pacientes com neuropatia diabética, eles incluem analgésicos (preferencialmente não-opióides); antidepresivos-tricíclicos, fentoina ou carbamazepina (anticonvulsivos); me- xiletina (um anidídrido-rítmico), ou estimulação elétrica nervosa transcutânea (RULL et al., 1992; GUE- LER, 1993; BRUNNER & SUDDARTH, 1982; MINISTERIO DA SAÚDE, 1993).

Além das drogas citadas no tratamento, hoje estudam-se um grupo de drogas chamado de inibidores da enzima aldose redutase. SANTIAGO (1992) afirma que o emprego deste tipo de drogas basea-se na demonstração do papel central da enzima aldose redutase nas anormalidades metabólicas, funcionais e estruturais induzidas pela hiperglycemia em modelos animais de diabetes. Em animais, estas drogas previnem as anormalidades associadas com a neuropatia diabética. No homem melhoram a velocidade de condução nervosa, a morfologia do nervo tibial e a evolução clínica de pacientes diabéticos. A aldose redutase é uma enzima pertencente à família das oxireduetas cito-plasmáticas dependentes de NADH que convertem açúcares simples, como a glicose e a galactose em seus respectivos álcoois, o sorbitol e o galactitol. Acredita-se que seu papel é participar na regulação da osmolaridade celular, sabe-se que no homem, o aumento intracelular de glicose leva à sua estimação. O aumento de sorbitol leva à formação aumentada de frutose e aumento da concentração de NADH intracelular, já que este é formado na referida reação o excesso de NADH e consequente diminuição de NAD+ afeta várias vias metabólicas dependendo do estado do citosol. Dentre elas estão o ciclo do ácido tricarboxílico e a glicólise. Demonstra-se que os inibidores da aldose redutase reduzem ou corrigem um grande número de anormalidades metabólicas, funcionais e estruturais em modelos experimentais.

As experiências continuam com este grupo de drogas. Há também uma nova medicação tópica, a capsaicina (Ascan), que nos relatos preliminares comprovou diminuir a dor neuropática das extremidades inferiores. As investigações sobre o papel desta medicação tópica na neuropatia continuam (BRUNNER & SUDDARTH, 1982).

No diabético, segundo GUELER (1993), a lesão neuropática apresenta uma característica patológica clássica, chamada “pé diabético”, que geralmente é insensível à dor ou ao calor, insensibilidade esta que é um risco para o paciente. Tal envolvimento neurológico se completa com alterações vasculares que causam graves alterações tróficas, com diminuição da circulação e celulite que ao se- rem elevados, os pés ficam brancos, ao baixar-los ficam vermelhos, com cianose. Neuropatias, infecção e doença vascular levam o paciente idoso à gangrena em pouco tempo. A amputação sempre deve ser feita onde haja boa circulação, mas em geral o sítio de escolha é a coxa, porque o débito circulatório é quase na raiz do membro gangrenado. CAMEJO (1992) estima que 10% dos pacientes diabéticos desenvolvem em algum momento de sua patologia o “pé diabético” e afirma também que entre 20 a 25% das internações de diabéticos devem-se a complicações de seus pés.

As mononeuropatias podem surgir após um infarto isquémico do tronco nervoso por obstrução da vasa nervosum. Acomete um ou mais troncos nervosos, geralmente suas manifestações são predominantemente motoras. As formas mais comuns são aquelas que atingem os nervos craniâis, levando a oftalmoplegia e paralisia facial. Outros nervos comumente atingidos são o radial (“mão caída”), o femoral superficial (neuralgia parestésica) e o nervo fibular (“pé caído”). Caracteristicamente, o início do quadro é abrupto (MINISTERIO DA SAÚDE, 1993).

Neuropatia diabética autônoma

As lesões do Sistema Nervoso Autônomo (SNA) podem aparecer em um elevado número de enfermidades sistêmicas, mas na diabetes me-
Ilítus é que se apresenta com maior frequência. Considera-se tradicionalmente como o SNA, a eferência que inerva a musculatura lisa e as vísceras, assim como alguns tecidos endócrinos e exócrinos. A grande diversidade de sintomas e sinais que compõem a neuropatia diabética autonômica deve-se às suas características anatômicas e estão associados com os diversos órgãos e ou tecidos atingidos. As fibras autonômicas são muitas vezes desmielinizadas e podem ser mais sensíveis às alterações metabólicas. Podemos dividir as lesões autonômicas de acordo com a localização anatômica dos nervos atingidos (JADZINSKY, 1992).

Lesões do Sistema Cardiovascular

Alterações Urogenitais

A neuropatia autônoma da medula suprarrenal “inconsciência hipoglicêmica” é responsável pela diminuição ou ausência de sintomas adrenérgicos na hipoglicemia. Os pacientes podem relatar que não apresentam mais os tremores típicos, transpiração, nervosismo e palpitações associados à hipoglicemia. O controle estrito da glicose não é recomendado para estes pacientes. Sua incapacidade em detectar e tratar apropriadamente estes sinais de alerta da hipoglicemia os coloca em risco de desenvolver níveis perigosamente baixos de glicemia (BRUNNER & SUDDARTH, 1982).

Disfunção Sexual

A disfunção sexual, em mulheres diabéticas, é considerada como uma síndrome depressiva que acompanha estas mulheres e pode influenciar na libido, sendo um dos principais motivos da disfunção sexual feminina, já que os efeitos da neuropatia autônoma no funcionamento sexual feminino não estão bem documentados. A redução da lubrificação vaginal foi mencionada como um possível efeito da neuropatia; entretanto, faltam as pesquisas que apoiem esta e outras potenciais disfunções sexuais femininas (JADZINSKY, 1992).

Segundo BRUNNER & SUDDARTH (1982), a impotência, deve ser motivo de atenção, já que no homem diabético a neuropatia não é a única causa de impotência. Os medicamentos, tais como os antihiper-tensivos, os fatores psicológicos e outras condições clínicas que podem afetar os homens não-diabéticos também contribuem para a impotência dos diabéticos. É extremamente importante que se faça uma avaliação precisa dos possíveis fatores que afetam a disfunção erétil. O tratamento de causas potencialmente subjacentes, tais como alteração das medicações anti-hiper-tensivas ou o fornecimento de um aconselhamento sexual, devem acontecer antes de tratamentos mais extensos, invasivos, tais como o implante cirúrgico do pênis.

O papel da hiperglicemia e da doenças vascular na impotência não está claramente definido. JADZINSKY (1992) considera as alterações diabéticas mais frequentes como aquelas que levam a lesões vasculares, neurológicas e hormonais. A glicose sanguínea pouco controlada, a dor e outros sintomas relacionados a complicações diabéticas podem contribuir para uma sensação geral de indisposição e de fraqueza. Estes sintomas podem contribuir para uma diminuição no interesse pelas relações sexuais. Na neuropatia autônica, a libido, a capacidade de ejacular e a sensação de orgasmo geralmente não estão diminuídas (BRUNNER & SUDDARTH, 1982).

Alguns homens com neuropatia autônica apresentam uma função erétil normal e são capazes de ter orgasmo, mas não ejaculam. Occorre uma ejaculação retrôgrada, na qual o líquido seminal é retido para trás pela uretra prostática, para a bexiga urinária. O exame da urina confirma o diagnóstico, devido ao grande número de espermato-
zóides ativos presentes. É necessário um aconselhamento de fertilidade para os casais que tentam a concepção (BRUNNER & SUDDARTH, 1982).

Sintomas Gastrointestinais

Pode ocorrer retardo no esvaziamento gástrico com os sintomas típicos de saciedade precoce, náuseas e vômitos. Além disso, podem haver amplas e inexplicáveis alterações nos níveis de glicose sanguínea devido à absorção imprevisível de glicose dos alimentos ingeridos. A “constipação diabética” ou diarreia, especialmente a noturna, também estão associada à neuropatia gastrointestinal autônoma (BRUNNER & SUDDARTH, 1982).

JADZINSKY (1992) e o MINISTÉRIO DA SAÚDE (1993) dividem a neuropatia gastrointestinal nos diferentes segmentos do tubo digestivo. Muitas vezes, consideram estes autores que os sintomas são dificilmente diferenciáveis, e esta neuropatia passa despercebida. Das funções do sistema digestório, a mais alterada é a motilidade do tubo, nos seus diversos segmentos.

Esôfago: Na maioria dos pacientes os transtornos da motilidade esofágica são assintomáticos. Demonstra-se uma diminuição da velocidade das ondas peristálticas, assim como as segmentares e de massa, semelhante ao observado em pacientes com vagotomia. Observa-se rompimento das fibras parasimpáticas da parede.

Estômago: As alterações produzidas pelo diabetes são especialmente as de motilidade e secreção gástrica. As alterações da motilidade são conhecidas como gastroparesia “megaestômago”, pode levar o alimento a permanecer no estômago por mais de 100 minutos. Sabe-se que a motilidade do estômago depende de sua inervação intrínseca promovida pelo Sistema Nervoso Entérico (SNE), assim como da inervação extrínseca proveniente do Sistema Nervoso Parassimpático. Alguns autores têm associado em animais de laboratório as alterações da motilidade gástrica com destruição de fibras nervosas, relacionadas com estas duas inervações.

As anormalidades de secreção clorídrica são um motivo de controvérsia. A secreção em diabéticos é deficitária mediante à estimulação máxima.

Intestino: SHERIDAN (1946) apud JADZINSKY (1992) descreveram a síndrome diarrética em pacientes diabéticos, e denominou de diarrea noturna de diabéticos. Os pacientes que apresentam esta síndrome têm outros sinais de neuropatia diabética. Durante muito tempo não se pode encontrar lesões dos plexos intramurais nem dos gânglios para e pré-vertebrais. FRANÇOIS (1958) apud JADZINSKY (1992) demonstraram pela primeira vez redução das células do plexo miêntérico em um paciente que apresentava diarreia acompanhada de estatorréia. DIANI (1979) apud JADZINSKY (1992) realizando experimentos com animais mantidos com cetonúria permanentemente demonstraram alterações estruturais dos plexos miêntéricos do intestino delgado. Para alguns autores, uma das mais frequentes complicações é a constipação intestinal nos diabéticos. A ausência de reflexos gastrocolônicos posprandiais é um elemento patogênico importante e suas causas podem ser lesões nos receptores neurais da mucosa gastroduodenal (aférentes) ou dos neurônios estimulatórios (eférentes) da musculatura lisa do intestino.

Todos os autores por nós analisados, no que diz respeito a neuropatia diabética, concordam no fato de que é necessário maior número de pesquisas para melhor compreendermos esta neuropatia.

Avanços em pesquisas sobre neuropatia diabética e seus efeitos sobre o aparelho digestório

Existe o consenso de que o diabetes afeta a inervação intramural do aparelho digestório alterando o seu funcionamento. Este fato motivou investigações científicas e publicações de diversos artigos, havendo controvérsias no que tange os resultados encontrados.

Neste sentido, BERGE et al. (1956), examinando o plexo intramural de humanos em oito casos autopsiados e comparando-os com grupos controle diabéticos e não diabéticos não encontraram mudanças patológicas significativas.

LINCOLN et al. (1984), empregando técnicas neuroquímicas e histoquímicas, verificam mudanças na inervação do colo e íleo de ratos com diabetes induzido por estreptozotocina. Estes autores encontraram alterações no comportamento de neurotransmissores que acreditam ser relevantes para os tipos de disfunções encontradas nesta patologia.

Por outro lado, FRANCOIS & MOURI-
QUAND (1958) encontraram no plexo mientérico de um paciente com diarreia diabética, decréscimo de células ganglionares e hipертrofia de células de Schwan.

HENSLEY & SOERGEL (1968) estudaram em necrópsias, pacientes que sofriam de diarreia diabética e compararam com grupos de pacientes não diabéticos e diabéticos sem diarreia. Os achados neuropatológicos foram limitados aos gânglios prevertebrais e para-vertebrais do sistema nervoso simpático. Dois tipos de anormalidades foram observadas: (1) neurônios simpáticos gigantes (GNSs) e (2) expansão dendrítica de neurônios pós-ganglionares.

CLEMENTS & BELL (1982) afirmam que o envolvimento do intestino delgado em quadros de neuropatia diabética resultam na diarreia diabética, comummente indolor e frequentemente com fêzes aquosas, sem perda de peso. A diarreia noturna é comumente acompanhada por incontinência fecal.

As controvérsias de estudos em humanos e o pequeno número de relatos na literatura mencionada motivaram os trabalhos de diversos pesquisadores no sentido de investigar os efeitos do diabetes sobre o sistema nervoso periférico de ratos, sendo que alguns destes trabalhos serão destacados a seguir.

O diabetes mellitus, ao comprometer o funcionamento normal do Sistema Nervoso Periférico atinge também o SNE. Buscando a comprovação de que o diabetes pode levar à neuropatia periférica também nos neurônios entéricos, muitos autores têm se preocupado com o estudo desta condição patológica no tubo digestivo de animais experimentais, para reforçar os estudos anteriormente citados e outros realizados em humanos. Estas pesquisas visam fornecer subsídios básicos para a compreensão de sinais e sintomas comuns desta doença, dentre eles principalmente a diarreia crônica do diabético.

Para realização de estudos experimentais os pesquisadores induzem o diabetes com a injeção de drogas como a aloxana ou estreptozootocina (HERNANDES, 1994).

A utilização de modelos experimentais em animais de laboratório, possibilitou a escolha de drogas que melhor simulassem a condição de diabetes, em sua forma crônica e aguda. Após muitos anos, utilizando indução do diabetes pela administração de aloxana, adotou-se no meio científico a droga chamada estreptozootocina. Esta é capaz de prejudicar o balanço NADH/NAD⁺ intra-celular levando à morte das células β das ilhotas pancreáticas. O mecanismo de ação desta droga possibilita aos pesquisadores a garantia de que a condição diabética será irreversível, o que possibilita a simulação dos estágios agudos e crônicos desta doença (GUNNARSSON et al., 1974).

BUTTOW (1996) verificou que o diabetes induzido leva a alterações morfológicas em neurônios entéricos que se iniciam entre 1 e 3 dias após o início do experimento e que se acentuam com o envelhecimento, ainda estudou aspectos morfológicos e quantitativos dos neurônios do plexo mientérico do duodeno de ratos com diabetes agudo e crônico induzidos por estreptozootocina. Verificou que animais na condição aguda de doença possuem um menor número de neurônios, o que atribuem a toxidade potencial da droga. Já os animais, em condição crônica, apresentam uma taxa proporcional e menor de perda de neurônios, salienta ainda que este grupo acumula os efeitos inerentes do envelhecimento fisiológico.

ROMANO (1996) analisou as alterações que o diabetes mellitus crônico leva aos neurônios do plexo mientérico de ratos. Esta autora preocupou-se em estudar o colo ascendente de ratos e verificou que não existe perda neuronal imediata devido à toxidade da droga, nem após 2 meses da condição de diabetes. A manutenção do estado de diabetes por 8 meses não levou a perda significativa de neurônios. BELAI et al. (1991) apud ROMANO (1996), afirmam que o colo distal é o último segmento a ser afetado por condições de diabetes no que diz respeito a diminuição no número de suas fibras nervosas.

ZANONI (1996) estudou morfologicamente e quantitativamente os neurônios do plexo mientérico do ceco de ratos diabéticos com dois e oito meses de idade. Observou que os animais, com dois meses de diabetes, apresentavam redução na densidade neuronal devido à dilatação do ceco, o que deixa os gânglios esparsos, diminuindo-se o número de neurônios por unidade de área; e nos animais com oito meses a redução da densidade neuronal foi atribuída ao envelhecimento em condições de diabetes.
Considerações Finais

A análise da literatura nos leva a concluir que o diabetes mellitus é uma doença de alta incidência e prevalência em todo o mundo. Dentre as complicações crônicas mais comuns desta síndrome encontram-se a microangiopatia, a macroangiopatia e a neuropatia. A microangiopatia diabética, mais comum em suas formas de nefropatia e retinopatia envolve alterações de capilares com espessamento de suas lâminas basais e aumento da viscosidade sanguínea, levando a degeneração glomerular (nepropatia) e retiniana (retinopatia). A macroangiopatia, caracterizada por desenvolvimento de placas de ateroma em grandes vasos, levada por variação do metabolismo de lipídios, compromete a chegada sanguínea em vários órgãos e tecidos. A neuropatia diabética, atinge praticamente todos os territórios corporais. Caracteriza-se por lesões de axônios mais comumente, podendo também existir perda de corpos de neurônios. Várias são as teorias que tentam explicar a gênese destas alterações neurais, dentre elas o aumento do sorbitol intracelular e o comprometimento microvascular da vasa nervorum. Uma das complicações mais comuns da neuropatia envolve o sistema digestório, e caracteriza-se clinicamente por perda da capacidade de tônus e peristaltismo, levando a megasôfago, megástopágio, megacôlon, dentre outras complicações. Um dos sintomas mais frequentes em pacientes crônicos é a diarreia noturna. Por esta alta incidência e importância de sintomas o sistema digestório tem sido alvo de muitas pesquisas que buscam substratos morfológicos para as alterações funcionais. Relatos da literatura especializada demonstram a provável correlação entre sintomas de neuropatia diabética e perda de neurônios ou parte destes.

Na literatura encontra-se a cada ano uma gama de novas pesquisas, entretanto, muitos aspectos desta patologia permanecem obscuros. Por este motivo, verifica-se que além dos estudos realizados em humanos muitas são as pesquisas experimentais em animais. Nestes, existe a indução da condição de diabetes através de drogas como a estreptozotocina, que destrói as células beta pancreáticas impedindo a produção de insulina e levando à característica hiperplicemia.

Em relação à neuropatia diabética, embora já tenha sido motivo de numerosas investigações científicas, ainda não teve seus mecanismos completamente esclarecidos, carecendo portanto de maiores investigações e apresentado-se como uma linha de pesquisa aberta para investigações fisiopatológicas, clínicas, morfológicas, bioquímicas e farmacológicas.

Referências Bibliográficas

HERNANDES, L. Estudo morfológico da mucosa e do corpo celular dos neurônios do plexo mientérico do íleo de ratos com Diabetes Mellitus induzido por estrepto-

